Math Problem Statement

e5xsin(6x)dx\int_{}^{}e^{5x}\sin\left(6x\right)\,\mathrm{d}x

Solution

To solve the integral e5xsin(6x)dx\int e^{5x} \sin(6x) \, dx, we will use the method of integration by parts.

Step 1: Identify uu and dvdv

We'll set: u=e5x,dv=sin(6x)dxu = e^{5x}, \quad dv = \sin(6x) \, dx

Now, find dudu and vv:

  1. Differentiate uu: du=5e5xdxdu = 5e^{5x} \, dx

  2. Integrate dvdv to find vv: v=sin(6x)dx=16cos(6x)v = \int \sin(6x) \, dx = -\frac{1}{6} \cos(6x)

Step 2: Apply the Integration by Parts Formula

The integration by parts formula is: udv=uvvdu\int u \, dv = uv - \int v \, du

Substitute the values: e5xsin(6x)dx=e5x(16cos(6x))(16cos(6x))5e5xdx\int e^{5x} \sin(6x) \, dx = e^{5x} \left(-\frac{1}{6} \cos(6x)\right) - \int \left(-\frac{1}{6} \cos(6x)\right) \cdot 5e^{5x} \, dx

Simplify the expression: e5xsin(6x)dx=16e5xcos(6x)+56e5xcos(6x)dx\int e^{5x} \sin(6x) \, dx = -\frac{1}{6} e^{5x} \cos(6x) + \frac{5}{6} \int e^{5x} \cos(6x) \, dx

Step 3: Solve the Remaining Integral

Now, we have to solve: e5xcos(6x)dx\int e^{5x} \cos(6x) \, dx We use integration by parts again. Set: u=e5x,dv=cos(6x)dxu = e^{5x}, \quad dv = \cos(6x) \, dx

Then, find dudu and vv:

  1. du=5e5xdxdu = 5e^{5x} \, dx
  2. v=cos(6x)dx=16sin(6x)v = \int \cos(6x) \, dx = \frac{1}{6} \sin(6x)

Apply integration by parts again: e5xcos(6x)dx=e5x(16sin(6x))16sin(6x)5e5xdx\int e^{5x} \cos(6x) \, dx = e^{5x} \left(\frac{1}{6} \sin(6x)\right) - \int \frac{1}{6} \sin(6x) \cdot 5e^{5x} \, dx Simplify: e5xcos(6x)dx=16e5xsin(6x)56e5xsin(6x)dx\int e^{5x} \cos(6x) \, dx = \frac{1}{6} e^{5x} \sin(6x) - \frac{5}{6} \int e^{5x} \sin(6x) \, dx

Step 4: Combine and Solve

Substitute this back into the original equation: e5xsin(6x)dx=16e5xcos(6x)+56(16e5xsin(6x)56e5xsin(6x)dx)\int e^{5x} \sin(6x) \, dx = -\frac{1}{6} e^{5x} \cos(6x) + \frac{5}{6} \left(\frac{1}{6} e^{5x} \sin(6x) - \frac{5}{6} \int e^{5x} \sin(6x) \, dx\right)

Now, group the integrals involving e5xsin(6x)dx\int e^{5x} \sin(6x) \, dx on one side: e5xsin(6x)dx(1+2536)=16e5xcos(6x)+536e5xsin(6x)\int e^{5x} \sin(6x) \, dx \left(1 + \frac{25}{36}\right) = -\frac{1}{6} e^{5x} \cos(6x) + \frac{5}{36} e^{5x} \sin(6x)

Simplify: e5xsin(6x)dx(6136)=16e5xcos(6x)+536e5xsin(6x)\int e^{5x} \sin(6x) \, dx \left(\frac{61}{36}\right) = -\frac{1}{6} e^{5x} \cos(6x) + \frac{5}{36} e^{5x} \sin(6x)

Finally, solve for the integral: e5xsin(6x)dx=6e5xcos(6x)+5e5xsin(6x)61+C\int e^{5x} \sin(6x) \, dx = \frac{-6e^{5x} \cos(6x) + 5e^{5x} \sin(6x)}{61} + C where CC is the constant of integration.

Final Answer

e5xsin(6x)dx=161e5x(6cos(6x)+5sin(6x))+C\int e^{5x} \sin(6x) \, dx = \frac{1}{61} e^{5x} \left(-6 \cos(6x) + 5 \sin(6x)\right) + C

Would you like further details on any of the steps or additional examples?

Related Questions

  1. How would the approach change if the integrand was eaxsin(bx)e^{ax} \sin(bx)?
  2. What if the integrand involved a cosine instead of a sine, like e5xcos(6x)e^{5x} \cos(6x)?
  3. How does integration by parts work for trigonometric integrals in general?
  4. Can this method be applied to integrals involving hyperbolic functions?
  5. How does the reduction formula for eaxsin(bx)dx\int e^{ax} \sin(bx) \, dx simplify this problem?

Tip

When facing integrals of products like eaxsin(bx)e^{ax} \sin(bx), expect to use integration by parts twice, and always look for patterns that simplify the algebraic manipulation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Trigonometric Integrals
Exponential Functions

Formulas

Integration by Parts formula

Theorems

-

Suitable Grade Level

Advanced Undergraduate